
Introduction
Definitions
Algorithms

Experiments
Conclusions

Aggregate Skyline Join Queries:
Skylines with Aggregate Operations over

Multiple Relations

Arnab Bhattacharya, B. Palvali Teja
arnabb@iitk.ac.in, tpalvali@amazon.com

Dept. of Computer Science and Engineering, Indian Institute of Technology, Kanpur
Amazon Development Centre, Hyderabad

COMAD
8th December, 2010

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

arnabb@iitk.ac.in
tpalvali@amazon.com

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

A practical problem

Flying from city A to city B where there is no direct flight

Join flights from city A to those to city B (using one intermediate
city)

Prefer flights with better ratings and amenities

More importantly, prefer combination of flights with lower total cost
and lower total duration

Translates nicely to skyline paradigm

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Skylines

Skylines address the problem of multi-criteria decision making where
there is no clear preference function
In the above example, ratings, amenities, total cost and total duration
are all important
Obviously, a flight pair having lower ratings, lower amenities, higher
cost and higher duration will never be preferred
However, for all other flight pairs, it is not clear what the user wants
Skyline shows an overall big picture for more thorough consideration

Skyline is incorporated in PostgreSQL systems with a SQL syntax
SELECT f1.fno, f2.fno, f1.dst, f2.src,

f1.arr, f2.dep, f1.rtg, f2.rtg, f1.amn, f2.amn,

cost AS f1.cost + f2.cost, duration AS f1.duration + f2.duration

FROM FlightsA AS f1, FlightsB AS f2

WHERE f1.dst = f2.src AND f1.arr < f2.dep AND

SKYLINE of cost MIN, duration MIN,

f1.rtg MAX, f2.rtg MAX, f1.amn MAX, f2.amn MAX

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Skylines

Skylines address the problem of multi-criteria decision making where
there is no clear preference function
In the above example, ratings, amenities, total cost and total duration
are all important
Obviously, a flight pair having lower ratings, lower amenities, higher
cost and higher duration will never be preferred
However, for all other flight pairs, it is not clear what the user wants
Skyline shows an overall big picture for more thorough consideration
Skyline is incorporated in PostgreSQL systems with a SQL syntax
SELECT f1.fno, f2.fno, f1.dst, f2.src,

f1.arr, f2.dep, f1.rtg, f2.rtg, f1.amn, f2.amn,

cost AS f1.cost + f2.cost, duration AS f1.duration + f2.duration

FROM FlightsA AS f1, FlightsB AS f2

WHERE f1.dst = f2.src AND f1.arr < f2.dep AND

SKYLINE of cost MIN, duration MIN,

f1.rtg MAX, f2.rtg MAX, f1.amn MAX, f2.amn MAX

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Example

Join (H) Aggregate (G) Local (L)
fno dep arr dst duration cost amn rtg
11 06:30 08:40 C 2h 10m 162 5 4
12 07:00 09:00 E 2h 00m 166 4 5
14 08:05 10:00 E 1h 55m 140 3 4
15 09:50 10:40 C 1h 40m 270 3 2
13 12:00 13:50 C 1h 50m 173 4 3
16 16:00 17:30 D 1h 30m 230 3 3
17 17:00 20:20 C 3h 20m 183 4 3

Flights from city A (FlightsA)

Join (H) Aggregate (G) Local (L)
fno src dep arr duration cost amn rtg
21 C 09:50 12:00 2h 10m 162 5 4
26 C 16:00 18:49 2h 49m 160 2 3
23 C 16:00 18:45 2h 45m 160 4 4
25 D 16:00 17:49 1h 49m 220 3 4
22 D 17:00 19:00 2h 00m 166 4 5
27 E 20:00 21:46 1h 46m 200 3 3
24 E 20:00 21:30 1h 30m 160 4 3

Flights to city B (FlightsB)

f1.fno f2.fno f1.dst f2.src f1.arr f2.dep f1.amn f2.amn f1.rtg f2.rtg cost duration Skyline
11 21 C C 08:40 09:50 5 5 4 4 324 4h 20m Yes
11 23 C C 08:40 16:00 5 4 4 4 322 4h 55m Yes
13 23 C C 13:50 16:00 4 4 3 4 333 4h 35m No
15 23 C C 10:40 16:00 3 4 2 4 430 4h 25m No
12 24 E E 09:00 20:00 4 4 5 3 326 3h 30m Yes
14 24 E E 10:00 20:00 3 4 4 3 300 3h 25m Yes

Part of the joined relation (FlightsA on FlightsB)

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Aggregate skyline join queries

Efficient algorithms exist for:
I Skyline computation on a single relation
I Skyline computation on a joined relation where the preferences are on

attributes of the base relations

We propose skyline computation on a joined relation where
preferences are both on:

I Individual attributes that are local to a base relation
I Attributes whose values are aggregates of attributes from the two

relations
F Total cost, i.e., cost of flight 1 + cost of flight 2
F Total duration, i.e., duration of flight 1 + duration of flight 2

We coin these queries “aggregate skyline join queries” or ASJQ

Useful in many applications
I Buying a digital camera and a compatible memory card
I Buying a team of good batsmen and bowlers

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Aggregate skyline join queries

Efficient algorithms exist for:
I Skyline computation on a single relation
I Skyline computation on a joined relation where the preferences are on

attributes of the base relations

We propose skyline computation on a joined relation where
preferences are both on:

I Individual attributes that are local to a base relation
I Attributes whose values are aggregates of attributes from the two

relations
F Total cost, i.e., cost of flight 1 + cost of flight 2
F Total duration, i.e., duration of flight 1 + duration of flight 2

We coin these queries “aggregate skyline join queries” or ASJQ

Useful in many applications
I Buying a digital camera and a compatible memory card
I Buying a team of good batsmen and bowlers

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Motivation
Skylines
Example
Aggregate Skyline Join Queries

Aggregate skyline join queries

Efficient algorithms exist for:
I Skyline computation on a single relation
I Skyline computation on a joined relation where the preferences are on

attributes of the base relations

We propose skyline computation on a joined relation where
preferences are both on:

I Individual attributes that are local to a base relation
I Attributes whose values are aggregates of attributes from the two

relations
F Total cost, i.e., cost of flight 1 + cost of flight 2
F Total duration, i.e., duration of flight 1 + duration of flight 2

We coin these queries “aggregate skyline join queries” or ASJQ

Useful in many applications
I Buying a digital camera and a compatible memory card
I Buying a team of good batsmen and bowlers

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Skyline tuple

Definition (Dominance)

A tuple r in a relation R dominates another tuple s ∈ R, denoted by
r � s, if there exists at least one attribute where r is strictly preferred over
s and in all other attributes, r is at least as preferred as s.

Example: preference functions are minimum
I A = {4, 5, 7}, B = {2, 5, 6}, C = {3, 6, 7}
I B � A; B � C ; A 6� C ; C 6� A

A skyline tuple is one that is not dominated by any other tuple in the
relation

I For above example, it is only B

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Local attributes

Definition (Local attributes)

The attributes of a relation on which preferences are applied for the
purposes of skyline computation, but no aggregate operation with an
attribute from the other relation is performed, are denoted as local
attributes.

Example: amenities, rating

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Aggregate attributes

Definition (Aggregate attributes)

The attributes of a relation, on which an aggregate operation is performed
with another attribute from the other relation, and then preferences are
applied on the aggregated value for skyline computation, are denoted as
aggregate attributes.

Example: cost, duration

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Join attributes

Definition (Join attributes)

The attributes of a relation, on which no skyline preferences are specified,
but are used to specify the join conditions between the two relations, are
denoted as join attributes.

Example: source, destination, departure, arrival

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Dominance

Full dominance: A tuple r fully dominates s if r dominates s in both
the local and aggregate attributes

Local dominance: A tuple r locally dominates s if r dominates s in
only the local attributes

Full dominance implies local dominance but not vice versa

If a tuple does not dominate another tuple locally, it does not
dominate it fully either

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Dominance with join attrbutes

Dominance relationships help infer certain properties in final joined set

For that, it is necessary that whenever a tuple t ′ = u on v ′ exists in
the final relation, the tuple t = u on v , where v ′ � v , also exists

However, the join attributes of v ′ and v may be such that only v ′

satisfies the join condition with u, but v does not

Hence, inference about t ′ on the assumption that t exists is wrong

Example
I Flight 15 is dominated by flight 16
I However, flight 15 can join with flight 23 which flight 16 cannot

Therefore, preferences over join attributes need to be considered while
considering dominance

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Skyline
Attributes
Dominance Relationships

Preferences over join attributes

Suppose join condition for two join attributes a ∈ A and b ∈ B is
A.a� B.b

� may be any of =, <,≤, >,≥
For tuple u′ ∈ A to be dominated by u ∈ A, whenever u′ joins with
v ∈ B, u must be able to join with v as well

If � is =, then u.a = u′.a, both being equal to v .b

If � is <, then u.a < u′.a (sufficient)

Thus, join attribute is also considered a skyline attribute

Definitions of full and local dominance are modified to include
preferences over join attributes as well

Join condition u ∈ A � u′ ∈ A if v ∈ B � v ′ ∈ B if

A.a = B.b u.a = u′.a v .b = v ′.b
A.a < B.b, A.a ≤ B.b u.a ≤ u′.a v .b ≥ v ′.b
A.a < B.b, A.a ≥ B.b u.a ≥ u′.a v .b ≤ v ′.b

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Näıve algorithm

Compute join

Perform aggregates

Compute skylines over all preferences

Computationally expensive

Impractical

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Näıve algorithm

Compute join

Perform aggregates

Compute skylines over all preferences

Computationally expensive

Impractical

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Full
skylines

Some skyline computation can be done before joining

Denote full skyline sets by A0 and B0

Non-skyline sets are A′0 = A− A0 and B ′0 = B − B0

Theorem: Tuples formed by joining A′0 or B ′0 cannot be part of the
final skyline set

Proof
I Assume a tuple t ′ = u ∈ A0 on v ′ ∈ B ′

0
I Consider another tuple t = u ∈ A0 on v ∈ B0.
I Since v � v ′, t � t ′

Effect: Prunes all tuples in A′0 on B0, A0 on B ′0 and A′0 on B ′0

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Full
skylines

Some skyline computation can be done before joining

Denote full skyline sets by A0 and B0

Non-skyline sets are A′0 = A− A0 and B ′0 = B − B0

Theorem: Tuples formed by joining A′0 or B ′0 cannot be part of the
final skyline set

Proof
I Assume a tuple t ′ = u ∈ A0 on v ′ ∈ B ′

0
I Consider another tuple t = u ∈ A0 on v ∈ B0.
I Since v � v ′, t � t ′

Effect: Prunes all tuples in A′0 on B0, A0 on B ′0 and A′0 on B ′0

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Full
skylines

Some skyline computation can be done before joining

Denote full skyline sets by A0 and B0

Non-skyline sets are A′0 = A− A0 and B ′0 = B − B0

Theorem: Tuples formed by joining A′0 or B ′0 cannot be part of the
final skyline set

Proof
I Assume a tuple t ′ = u ∈ A0 on v ′ ∈ B ′

0
I Consider another tuple t = u ∈ A0 on v ∈ B0.
I Since v � v ′, t � t ′

Effect: Prunes all tuples in A′0 on B0, A0 on B ′0 and A′0 on B ′0

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Local
skylines

Denote local skyline sets in A0 and B0 by A1 and B1 respectively

Non-skyline sets are A′1 = A0 − A1 and B ′1 = B0 − B1

Theorem: Tuples formed by joining A1 or B1 are surely part of the
final skyline set

Proof
I Assume a tuple t = u ∈ A1 on v ′ ∈ B ′

1
I Consider any other tuple t ′ = u′ ∈ A0 on v ′ ∈ B ′

1.
I Since u is a local skyline, 6 ∃u′, u′ 6� u
I Therefore, 6 ∃t ′, t ′ � t

Effect: Outputs all tuples in A′1 on B1, A1 on B ′1 and A1 on B1

Only A′1 on B ′1 needs to be examined

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Local
skylines

Denote local skyline sets in A0 and B0 by A1 and B1 respectively

Non-skyline sets are A′1 = A0 − A1 and B ′1 = B0 − B1

Theorem: Tuples formed by joining A1 or B1 are surely part of the
final skyline set

Proof
I Assume a tuple t = u ∈ A1 on v ′ ∈ B ′

1
I Consider any other tuple t ′ = u′ ∈ A0 on v ′ ∈ B ′

1.
I Since u is a local skyline, 6 ∃u′, u′ 6� u
I Therefore, 6 ∃t ′, t ′ � t

Effect: Outputs all tuples in A′1 on B1, A1 on B ′1 and A1 on B1

Only A′1 on B ′1 needs to be examined

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Performing skylines before join: Local
skylines

Denote local skyline sets in A0 and B0 by A1 and B1 respectively

Non-skyline sets are A′1 = A0 − A1 and B ′1 = B0 − B1

Theorem: Tuples formed by joining A1 or B1 are surely part of the
final skyline set

Proof
I Assume a tuple t = u ∈ A1 on v ′ ∈ B ′

1
I Consider any other tuple t ′ = u′ ∈ A0 on v ′ ∈ B ′

1.
I Since u is a local skyline, 6 ∃u′, u′ 6� u
I Therefore, 6 ∃t ′, t ′ � t

Effect: Outputs all tuples in A′1 on B1, A1 on B ′1 and A1 on B1

Only A′1 on B ′1 needs to be examined

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Example

Join (H) Aggregate (G) Local (L)
fno dep arr dst duration cost amn rtg
11 06:30 08:40 C 2h 10m 162 5 4
12 07:00 09:00 E 2h 00m 166 4 5
14 08:05 10:00 E 1h 55m 140 3 4
15 09:50 10:40 C 1h 40m 270 3 2
13 12:00 13:50 C 1h 50m 173 4 3
16 16:00 17:30 D 1h 30m 230 3 3
17 17:00 20:20 C 3h 20m 183 4 3

Flights from city A (FlightsA)

Join (H) Aggregate (G) Local (L)
fno src dep arr duration cost amn rtg
21 C 09:50 12:00 2h 10m 162 5 4
26 C 16:00 18:49 2h 49m 160 2 3
23 C 16:00 18:45 2h 45m 160 4 4
25 D 16:00 17:49 1h 49m 220 3 4
22 D 17:00 19:00 2h 00m 166 4 5
27 E 20:00 21:46 1h 46m 200 3 3
24 E 20:00 21:30 1h 30m 160 4 3

Flights to city B (FlightsB)

Set Flight numbers

A0

A1 11, 12

A′
1
A2 13, 14
A′
2 15, 16

A′
0 17

Set Flight numbers

B0

B1 21, 22

B′
1
B2 23
B′
2 24, 25

B′
0 26, 27

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Multiple skyline computations (MSC)
algorithm

Utilizes Theorem 1 to prune all tuples in A′0 on B0, A0 on B ′0 and
A′0 on B ′0
Utilizes Theorem 2 to output all tuples in A′1 on B1, A1 on B ′1 and
A1 on B1

Examines A′1 on B ′1 fully
I Tests every tuple by checking whether any other tuple in A0 on B0

dominates it

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Dominator-based approach

A tuple t ′ = u′ ∈ A′1 on v ′ ∈ B ′1 can be dominated only by certain
tuples in A0 on B0

Suppose the local dominators of u′ and v ′ are denoted by ld(u′) and
ld(v ′) respectively

Lemma: t ′ can be dominated only by t of the form
t = u ∈ ld(u′) on v ∈ ld(v ′)

Proof
I Consider a tuple u /∈ ld(u′) and consider any tuple t = u on v
I Local attributes of u′ are not dominated by u
I Therefore, local attributes of t ′ are also not dominated by t

Effect: A tuple t ∈ A′1 on B ′1 need not be checked against all tuples in
A0 on B0, but only those in ld(u′) on ld(v ′)

Maintaining local dominator sets ld(.) may be costly

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Dominator-based approach

A tuple t ′ = u′ ∈ A′1 on v ′ ∈ B ′1 can be dominated only by certain
tuples in A0 on B0

Suppose the local dominators of u′ and v ′ are denoted by ld(u′) and
ld(v ′) respectively

Lemma: t ′ can be dominated only by t of the form
t = u ∈ ld(u′) on v ∈ ld(v ′)

Proof
I Consider a tuple u /∈ ld(u′) and consider any tuple t = u on v
I Local attributes of u′ are not dominated by u
I Therefore, local attributes of t ′ are also not dominated by t

Effect: A tuple t ∈ A′1 on B ′1 need not be checked against all tuples in
A0 on B0, but only those in ld(u′) on ld(v ′)

Maintaining local dominator sets ld(.) may be costly

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Iterative algorithm

Cost of comparing all tuples in ld(A′1) and ld(B ′1) is high

Divide A′1 and B ′1 further into local skyline sets A2 and B2 respectively

Non-skyline sets are A′2 = A′1 − A2 and B ′2 = B ′1 − B2

This division of A0 is carried on iteratively into A1,A2, . . . ,Ak ,A
′
k

Similar division of B0 into B1,B2, . . . ,Bk ,B
′
k

A
1

A
2

...

A
0

A’
1

A’
0

L G

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Target sets

Dominators of a certain set can exist only in certain other sets

For example, a tuple in A2 on B2 needs to be compared with tuples in
A1 on B1 only

No unnecessary comparison with (A1 on B ′1) ∪ (A′1 on B1) ∪ (A′1 on B ′1)

Set Target Sets

A2 on B2 A1 on B1

A2 on B′
2 A1 on B1, A1 on B′

1
A′
2 on B2 A1 on B1, A′

1 on B1

A′
2 on B′

2 A1 on B1, A1 on B′
1, A

′
1 on B1

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Single aggregate attribute

When there is only one aggregate attribute, the case is quite simpler

Lemma: All tuples in A0 on B0 are part of the final answer set

Proof
I Consider a tuple t ′ = u′ ∈ A′

1 on v ′ ∈ B ′
1

I Claim: 6 ∃t, t � t ′

I Suppose such a t = u on v exists
I Therefore, u �ld u′ and v �ld v ′

I However, since u′ ∈ A0 and v ′ ∈ B0, u 6�fd u′ and v 6�fd v ′

I Therefore, it must be that u′ �g u and v ′ �g v
I This implies that t 6� t ′

Effect: Finding local skylines is enough

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Single aggregate attribute

When there is only one aggregate attribute, the case is quite simpler

Lemma: All tuples in A0 on B0 are part of the final answer set

Proof
I Consider a tuple t ′ = u′ ∈ A′

1 on v ′ ∈ B ′
1

I Claim: 6 ∃t, t � t ′

I Suppose such a t = u on v exists
I Therefore, u �ld u′ and v �ld v ′

I However, since u′ ∈ A0 and v ′ ∈ B0, u 6�fd u′ and v 6�fd v ′

I Therefore, it must be that u′ �g u and v ′ �g v
I This implies that t 6� t ′

Effect: Finding local skylines is enough

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Näıve Algorithm
Performing Skylines before Join
Multiple Skyline Computations Algorithm
Dominator-based Approach
Iterative Algorithm

Single aggregate attribute

When there is only one aggregate attribute, the case is quite simpler

Lemma: All tuples in A0 on B0 are part of the final answer set

Proof
I Consider a tuple t ′ = u′ ∈ A′

1 on v ′ ∈ B ′
1

I Claim: 6 ∃t, t � t ′

I Suppose such a t = u on v exists
I Therefore, u �ld u′ and v �ld v ′

I However, since u′ ∈ A0 and v ′ ∈ B0, u 6�fd u′ and v 6�fd v ′

I Therefore, it must be that u′ �g u and v ′ �g v
I This implies that t 6� t ′

Effect: Finding local skylines is enough

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Performance of näıve algorithm

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

Settings

Naive
MSC

Dominator
Iterative

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 2 3 4 5

C
ar

di
na

lit
y

of
 A

S
JQ

Settings

Näıve algorithm takes much more time

Performance is independent of cardinality of final answer set

Overall, iterative algorithm is the best

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Default experimental parameters

Parameter Symbol Default value

Number of local attributes L 2
Number of aggregate attributes G 2

Cardinality of datasets N 40000
Number of categories C 10
Distribution of datasets D Correlated

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of number of local attributes

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

Number of local attributes, L

MSC
Dominator

Iterative

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 2 3 4 5 6

C
ar

di
na

lit
y

of
 A

S
JQ

Number of local attributes, L

Running time increases almost exponentially with number of local
attributes

Iterative shows best scalability

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of number of aggregate attributes

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

Number of aggregate attributes, G

MSC
Dominator

Iterative

 300

 600

 900

 1200

 1500

 1800

 2100

1 2 3 4 5 6

C
ar

di
na

lit
y

of
 A

S
JQ

Number of aggregate attributes, G

Running time increases almost exponentially with number of
aggregate attributes

Absolute times are lower

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of dataset cardinality

 0

 20

 40

 60

 80

 100

 120

10000 20000 30000 40000 50000

R
un

ni
ng

 ti
m

e
(s

)

Cardinality of datasets, N

MSC
Dominator

Iterative

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

0 10000 20000 30000 40000 50000

C
ar

di
na

lit
y

of
 A

S
JQ

Cardinality of datasets, N

Scalability is better than quadratic

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of dataset distribution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Cor Ind AntiCor

R
un

ni
ng

 ti
m

e
(s

)

Distribution

MSC
Dominator

Iterative

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Cor Ind AntiCor

C
ar

di
na

lit
y

of
 A

S
JQ

Distribution

Cardinality of final answer set is much higher in anti-correlated
datasets

Iterative shows the best comparative advantage in this case

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of categories of join attribute

 0

 5

 10

 15

 20

 25

 30

 35

1 5 10 50 100

R
un

ni
ng

 ti
m

e
(s

)

Number of categories, C

MSC
Dominator

Iterative

 1200

 1500

 1800

 2100

 2400

 2700

 3000

1 5 10 50 100

C
ar

di
na

lit
y

of
 A

S
JQ

Number of categories, C

Number of categories of join attribute measures the possible values of
the join attribute (equi-join)

When number of join categories increases
I Full skyline sets A0 and B0 become larger as there is less probability of

a tuple matching another tuple in the join attribute, and therefore,
dominating it

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Performance of Näıve Algorithm
Experimental Setup
Effect of Parameters

Effect of categories of join attribute

 0

 5

 10

 15

 20

 25

 30

 35

1 5 10 50 100

R
un

ni
ng

 ti
m

e
(s

)

Number of categories, C

MSC
Dominator

Iterative

 1200

 1500

 1800

 2100

 2400

 2700

 3000

1 5 10 50 100

C
ar

di
na

lit
y

of
 A

S
JQ

Number of categories, C

For two relations having N tuples with C categories, the cardinality of
the joined set is C × (N/C)2 = N2/C
At higher number of join categories

I The cardinality of the joined set is low leading to a lower cardinality
When number of join categories is low

I The number of tuples in each category is high
I However, there is a higher chance of a tuple being dominated thereby

leading to a lower cardinality
Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Conclusions

Proposed a novel query – Aggregate Skyline Join Query

Extended the general skyline operator to multiple relations involving
joins using aggregate operations over attributes from different
relations

Extensions to distributed and parallel environments

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Conclusions

Proposed a novel query – Aggregate Skyline Join Query

Extended the general skyline operator to multiple relations involving
joins using aggregate operations over attributes from different
relations

Extensions to distributed and parallel environments

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

Introduction
Definitions
Algorithms

Experiments
Conclusions

Conclusions

Proposed a novel query – Aggregate Skyline Join Query

Extended the general skyline operator to multiple relations involving
joins using aggregate operations over attributes from different
relations

Extensions to distributed and parallel environments

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Aggregate Skyline Join Queries

	Introduction
	Motivation
	Skylines
	Example
	Aggregate Skyline Join Queries

	Definitions
	Skyline
	Attributes
	Dominance Relationships

	Algorithms
	Naïve Algorithm
	Performing Skylines before Join
	Multiple Skyline Computations Algorithm
	Dominator-based Approach
	Iterative Algorithm

	Experiments
	Performance of Naïve Algorithm
	Experimental Setup
	Effect of Parameters

	Conclusions

